Welcome To DroneVibes

DroneVibes is a COMMUNITY of drones enthusiasts. We are experts at drones for all professional and consumer applications. We welcome you to register and join the conversation.

How to install Benewake TF SERIES on PixHawk(Take TF01 for example)

Discussion in 'Mapping Hardware and Software' started by sophia lee, Dec 28, 2017.

  1. sophia lee

    sophia lee Member

    58
    0
    1
    Nov 22, 2017
    china
    Posted by sophia lee, Dec 28, 2017 #1
    Install TF SERIES module on your drone vertically to the ground so you can get the absolute altitude of your drone. Here is how to install our module on PixHawk. We provided two methods below.

    1. How does TF SERIES work on PixHawk

    Lidar’s are used in flight modes which have height control, such as....

    PixHawk interface for rangefinder are I2C , Analog, Serial. Details are on http://ardupilot.org/copter/docs/common-rangefinder-landingpage.html

    2. Serial Mode
    We recommend using Serial to send altitude signal to PixHawk.

    Cautions: If you use serial, please update your firmware, make sure is newer than V 3.3.3.

    2.1 Wire


    [​IMG]

    Pic. 1(a) Connect TF SERIES to PixHawk via Serial





    [​IMG]

    Pic. 1(b) Connect TF SERIES to PixHawk via Serial

    2.2 Mission Planner
    Connect Flight Controller to MP, click CONFIG/TUNING then select Full Parameter List change parameters as below:

    • SERIAL4_PROTOCOL = 9 (Lidar)
    • SERIAL4_BAUD = 115
    • RNGFND_TYPE = 8 (LightWareSerial)
    • RNGFND_SCALING = 1
    • RNGFND_MIN_CM = 5
    • RNGFND_MAX_CM = 1200
    • RNGFND_GNDCLEAR = 5 unit cm, or you can use more specific value, it depends on the height TF SERIES installed.
    After all your settings click Write Params

    See in Pic.2 and Pic.3



    [​IMG]

    Pic.2 Serial parameter configuration



    [​IMG]

    Pic.3 Serial parameter configuration

    If Bad Lidar Health error occurs, please check if TF SERIES LiDAR window first, see whether TF SERIES emit red LED light. If there`s no red LED light, please check power supply. (Sometimes PixHawk have Serial 4/5 power supply issue) If there is LED light, please check if you wire the Serial correctly. If you still get this error message and got no reading in sonarrange/sonarvoltage, please connect TF01 to TELEM2 (like Pic.1(b))and change the Parameter for Serial 2 as below.

    • SERIAL2_PROTOCOL = 9 (Lidar)
    • SERIAL2_BAUD = 115
    3. AD mode to simulate Sonar Sensor Maxbotix


    TF SERIES data is first send to a STM32 board and data is translated into AD data then sent to PixHawk.

    Caution: TF SERIES, STM32 board and PixHawk shall share a common-ground.





    [​IMG]

    Pic. 4 connect TF SERIES to PixHawk

    3.1 Wire
    Connect TF SERIES to input distance data using analog into PixHawk



    [​IMG]

    Pic. 5 Analog input wire,

    Red: 3.3V

    Orange: AD analog signal

    Black: GND

    1

    2

    3

    3.1

    3.2 Mission Planner Configuration
    Connect Flight controller to MP, select Full Parameter List in Config/Tuning, find and change the parameters below:

    • RNGFND_PIN = “14” for PixHawk’s ADC 3.3v pin #2 OR “0” for APM2.x
    • RNGFND_MAX_CM = “1200” (i.e. 12m max range)
    • RNGFND_SCALING = “4” (i.e. 4m / 1v)
    • RNGFND_TYPE = “1” (Analog)
    STM32 DA module can output voltage between 0-3.3V. When the distance reaches 12m, the voltage sent to PixHawk is 3V. Therefore set RNGFND_SCALING to 4。

    When all parameters are set, click Write Param.

    After all parameters are set and written, the TF SERIES data works on Altitude Hold, Loiter and PosHold Mode. The data from the sensor will be used until you exceed RNGFND_MAX_CM,(which as our set is 12m) after that it switches to the barometer. Currently Lidar is not supported in Auto Mode。

    Details are in Pic.6:



    [​IMG]

    Pic. 6 Details for parameter setting

    3.3 STM32 Trans Board Code
    Receive and analyze the distance data from TF SERIES

    // Global Variables

    u16 distance = 0;

    // Variables used by serial

    static u8 Usart1buf[USART1_BUF_SIZE];

    static u8 pointer = 0;



    // Serial Port 1 Function Initialize

    void USART1_Init(void)

    {

    USART_InitTypeDef USART1_InitStructure;

    GPIO_InitTypeDef GPIO_InitStructure;

    NVIC_InitTypeDef NVIC_InitStructure;



    // GPIOA Clock

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

    // A9 -> TX , A10 -> RX

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;

    GPIO_InitStructure.GPIO_Speed = GPIO_High_Speed;

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

    GPIO_Init(GPIOA,&GPIO_InitStructure);



    // Alternative Function Configuration

    GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1);

    GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1);

    // USART1 clock

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);

    // USART1 Interrupt Priority

    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

    NVIC_Init(&NVIC_InitStructure);

    // USART1 Initialize

    USART_DeInit(USART1);

    USART1_InitStructure.USART_BaudRate = 115200;

    USART1_InitStructure.USART_WordLength = USART_WordLength_8b;

    USART1_InitStructure.USART_StopBits = USART_StopBits_1;

    USART1_InitStructure.USART_Parity = USART_Parity_No;

    USART1_InitStructure.USART_Mode = USART_Mode_Rx|USART_Mode_Tx;

    USART1_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

    USART_Init(USART1,&USART1_InitStructure);

    USART_Cmd(USART1,ENABLE);

    USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);

    }



    // Serial Interrupt Function

    void USART1_IRQHandler(void)

    {



    if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET

    || (USART_GetITStatus(USART1, USART_IT_ORE_RX) != RESET))

    {

    USART_ClearITPendingBit(USART1, USART_IT_RXNE);

    Usart1buf[pointer++%USART1_BUF_SIZE] = USART_ReceiveData(USART1);



    // Receive data program

    if((pointer%USART1_BUF_SIZE >= 9))

    {

    // Check the head and the tail of the packet

    // Better do a checksum, not written here

    if( (Usart1buf[pointer%USART1_BUF_SIZE-3]==0x59)

    &&(Usart1buf[pointer%USART1_BUF_SIZE-4]==0x59))

    {

    //Distance

    distance=((u16)((Usart1buf[pointer%USART1_BUF_SIZE-1])8)

    |(u16)(Usart1buf[pointer%USART1_BUF_SIZE-2]));

    }

    }



    }

    }

    DAC Configuration

    void DAC_Config(void)

    {

    GPIO_InitTypeDef GPIO_InitStructure;



    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);



    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;

    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;

    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

    GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;

    GPIO_Init(GPIOA, &GPIO_InitStructure);



    DAC_InitTypeDef DAC_InitStructure;

    DAC_DeInit();

    DAC_InitStructure.DAC_Trigger = DAC_Trigger_Software;

    DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;

    DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;

    DAC_Init(DAC_Channel_1, &DAC_InitStructure);

    DAC_Cmd(DAC_Channel_1,ENABLE);



    DAC_SetChannel1Data(DAC_Align_12b_R,0x1fff);



    DAC_SoftwareTriggerCmd(DAC_Channel_1,ENABLE);

    }

    Main function:

    // The test height of TE-01 ,Unit mm

    float test_height;

    // Height bias, Unit mm

    float bias = 180;

    // Analog value output

    s16 analog=0;



    // Main

    void main(void)

    {

    // Interrupt Group Configuration

    NVIC_Config();

    // Serial Initialize

    USART1_Init();

    // DAC Config

    DAC_Config();



    // Main Loop

    while(1)

    {

    // Remove Bias

    test_height = distance - bias;

    // Data Conversion, 3V corresponding to the height of 12m, therefore

    // test_height * 3.3 * 4096/(3 * 1200)= test_height * 4096 / 1320

    analog = (s16)(test_height*4096/1320);

    // Range Limit

    analog = analog < 4095 ? analog : 4095;

    analog = analog > 0 ? analog : 0;

    // Voltage Output

    DAC_SetChannel1Data(DAC_Align_12b_R,analog);

    DAC_SoftwareTriggerCmd(DAC_Channel_1,ENABLE);

    }

    }



    4. Data Test


    In Flight Data of Mission Planner, Click Status below, find sonarrange(actual distance) and sonarvoltage(analog input voltage).



    [​IMG]

    Pic 7 Distance Sensor Test (Test if the sensor gets readings correctly)

    5. PID configuration
    All PID configuration for PixHawk can be done on Mission Planner. See in http://ardupilot.org/copter/docs/common-tuning.html.
     
Loading...

Share This Page

Loading...